Classification of first order sesquilinear forms

Author:

Capoferri Matteo1ORCID,Saveliev Nikolai2ORCID,Vassiliev Dmitri1ORCID

Affiliation:

1. Department of Mathematics, University College London, Gower Street, London WC1E 6BT, UK

2. Department of Mathematics, University of Miami, PO Box 249085, Coral Gables, Florida 33124, USA

Abstract

A natural way to obtain a system of partial differential equations on a manifold is to vary a suitably defined sesquilinear form. The sesquilinear forms we study are Hermitian forms acting on sections of the trivial [Formula: see text]-bundle over a smooth [Formula: see text]-dimensional manifold without boundary. More specifically, we are concerned with first order sesquilinear forms, namely, those generating first order systems. Our goal is to classify such forms up to [Formula: see text] gauge equivalence. We achieve this classification in the special case of [Formula: see text] and [Formula: see text] by means of geometric and topological invariants (e.g., Lorentzian metric, spin/spinc structure, electromagnetic covector potential) naturally contained within the sesquilinear form — a purely analytic object. Essential to our approach is the interplay of techniques from analysis, geometry, and topology.

Funder

EPSRC

Publisher

World Scientific Pub Co Pte Lt

Subject

Mathematical Physics,Statistical and Nonlinear Physics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3