SYSTEMS OF CLASSICAL PARTICLES IN THE GRAND CANONICAL ENSEMBLE, SCALING LIMITS AND QUANTUM FIELD THEORY

Author:

ALBEVERIO SERGIO1,GOTTSCHALK HANNO1,YOSHIDA MINORU W.2

Affiliation:

1. Institut für angewandte Mathematik, Rheinische Friedrich-Wilhelms-Universität Bonn, Wegelerstr. 6, D-53115 Bonn, Germany

2. Department of Mathematics and Systems Engeneering, The University of Electrocommunications 1-5-1, Chofugaku, Tokyo 182-8585, Japan

Abstract

Euclidean quantum fields obtained as solutions of stochastic partial pseudo differential equations driven by a Poisson white noise have paths given by locally integrable functions. This makes it possible to define a class of ultra-violet finite local interactions for these models (in any space-time dimension). The corresponding interacting Euclidean quantum fields can be identified with systems of classical "charged" particles in the grand canonical ensemble with an interaction given by a nonlinear energy density of the "static field" generated by the particles' charges via a "generalized Poisson equation". A new definition of some well-known systems of statistical mechanics is given by formulating the related field theoretic local interactions. The infinite volume limit of such systems is discussed for models with trigonometric interactions using a representation of such models as Widom–Rowlinson models associated with (formal) Potts models at imaginary temperature. The infinite volume correlation functional of such Potts models can be constructed by a cluster expansion. This leads to the construction of extremal Gibbs measures with trigonometric interactions in the low-density high-temperature (LD-HT) regime. For Poissonian models with certain trigonometric interactions an extension of the well-known relation between the (massive) sine-Gordon model and the Yukawa particle gas connecting characteristic and correlation functionals is given and used to derive infinite volume measures for interacting Poisson quantum field models through an alternative route. The continuum limit of the particle systems under consideration is also investigated and the formal analogy with the scaling limit of renormalization group theory is pointed out. In some simple cases the question of (non-) triviality of the continuum limits is clarified.

Publisher

World Scientific Pub Co Pte Lt

Subject

Mathematical Physics,Statistical and Nonlinear Physics

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3