Topological insulators and the Kane–Mele invariant: Obstruction and localization theory

Author:

Bunk Severin1ORCID,Szabo Richard J.234

Affiliation:

1. Fachbereich Mathematik, Bereich Algebra und Zahlentheorie, Universität Hamburg, Bundesstraße 55, 20146 Hamburg, Germany

2. Department of Mathematics, Heriot-Watt University, Colin Maclaurin Building, Riccarton, Edinburgh EH14 4AS, UK

3. Maxwell Institute for Mathematical Sciences, Edinburgh, UK

4. The Higgs Centre for Theoretical Physics, Edinburgh, UK

Abstract

We present homotopy theoretic and geometric interpretations of the Kane–Mele invariant for gapped fermionic quantum systems in three dimensions with time-reversal symmetry. We show that the invariant is related to a certain 4-equivalence which lends it an interpretation as an obstruction to a block decomposition of the sewing matrix up to non-equivariant homotopy. We prove a Mayer–Vietoris Theorem for manifolds with [Formula: see text]-actions which intertwines Real and [Formula: see text]-equivariant de Rham cohomology groups, and apply it to derive a new localization formula for the Kane–Mele invariant. This provides a unified cohomological explanation for the equivalence between the discrete Pfaffian formula and the known local geometric computations of the index for periodic lattice systems. We build on the relation between the Kane–Mele invariant and the theory of bundle gerbes with [Formula: see text]-actions to obtain geometric refinements of this obstruction and localization technique. In the preliminary part we review the Freed–Moore theory of band insulators on Galilean spacetimes with emphasis on geometric constructions, and present a bottom-up approach to time-reversal symmetric topological phases.

Publisher

World Scientific Pub Co Pte Lt

Subject

Mathematical Physics,Statistical and Nonlinear Physics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3