A “magic” approach to octonionic Rosenfeld spaces

Author:

Marrani Alessio1ORCID,Corradetti Daniele2ORCID,Chester David3ORCID,Aschheim Raymond3ORCID,Irwin Klee3ORCID

Affiliation:

1. Departamento de Física, Instituto de Física Teorica, Universidad de Murcia, Campus de Espinardo, E-30100, Spain

2. Departamento de Matemática, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal

3. Quantum Gravity Research, Topanga Canyon Rd 101 S, California, CA 90290, USA

Abstract

In his study on the geometry of Lie groups, Rosenfeld postulated a strict relation between all real forms of exceptional Lie groups and the isometries of projective and hyperbolic spaces over the (rank-2) tensor product of Hurwitz algebras taken with appropriate conjugations. Unfortunately, the procedure carried out by Rosenfeld was not rigorous, since many of the theorems he had been using do not actually hold true in the case of algebras that are not alternative nor power-associative. A more rigorous approach to the definition of all the planes presented more than thirty years ago by Rosenfeld in terms of their isometry group, can be considered within the theory of coset manifolds, which we exploit in this work, by making use of all real forms of Magic Squares of order three and two over Hurwitz normed division algebras and their split versions. Within our analysis, we find seven pseudo-Riemannian symmetric coset manifolds which seemingly cannot have any interpretation within Rosenfeld’s framework. We carry out a similar analysis for Rosenfeld lines, obtaining that there are a number of pseudo-Riemannian symmetric cosets which do not have any interpretation á la Rosenfeld.

Publisher

World Scientific Pub Co Pte Ltd

Subject

Mathematical Physics,Statistical and Nonlinear Physics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Collineation groups of octonionic and split-octonionic planes;Reviews in Mathematical Physics;2024-05-15

2. A minimal and non-alternative realisation of the Cayley plane;ANNALI DELL'UNIVERSITA' DI FERRARA;2024-03-06

3. Dixon-Rosenfeld lines and the Standard Model;The European Physical Journal C;2023-09-22

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3