Lie algebroids, gauge theories, and compatible geometrical structures

Author:

Kotov Alexei1,Strobl Thomas2ORCID

Affiliation:

1. Faculty of Science, University of Hradec Kralove, Rokitanskeho 62, Hradec Kralove 50003, Czech Republic

2. Institut Camille Jordan, Université Claude Bernard Lyon 1, Université de Lyon, 43 Boulevard du 11 Novembre 1918, 69622 Villeurbanne Cedex, France

Abstract

The construction of gauge theories beyond the realm of Lie groups and algebras leads one to consider Lie groupoids and algebroids equipped with additional geometrical structures which, for gauge invariance of the construction, need to satisfy particular compatibility conditions. This paper is supposed to analyze these compatibilities from a mathematical perspective.In particular, we show that the compatibility of a connection with a Lie algebroid that one finds is the Cartan condition, introduced previously by A. Blaom. For the metric on the base [Formula: see text] of a Lie algebroid equipped with any connection, we show that the compatibility suggested from gauge theories implies that the foliation induced by the Lie algebroid becomes a Riemannian foliation. Building upon a result of del Hoyo and Fernandes, we prove, furthermore, that every Lie algebroid integrating to a proper Lie groupoid admits a compatible Riemannian base. We also consider the case where the base is equipped with a compatible symplectic or generalized Riemannian structure.

Funder

Cech Science Foundation

European Research Council

CAPES

Swiss Sience Foundation

Publisher

World Scientific Pub Co Pte Lt

Subject

Mathematical Physics,Statistical and Nonlinear Physics

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Geometry of bundle-valued multisymplectic structures with Lie algebroids;Journal of Geometry and Physics;2024-09

2. Brane mechanics and gapped Lie n-algebroids;Journal of High Energy Physics;2024-08-29

3. Geometric BV for twisted Courant sigma models and the BRST power finesse;Journal of High Energy Physics;2024-07-11

4. Compatible $E$-Differential Forms on Lie Algebroids over (Pre-)Multisymplectic Manifolds;Symmetry, Integrability and Geometry: Methods and Applications;2024-03-31

5. Hamiltonian Lie algebroids;Memoirs of the American Mathematical Society;2024-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3