SYMMETRIES, NEWTONOID VECTOR FIELDS AND CONSERVATION LAWS IN THE LAGRANGIAN k-SYMPLECTIC FORMALISM

Author:

BUA LUCÍA1,BUCATARU IOAN2,SALGADO MODESTO1

Affiliation:

1. Departamento de Xeometría e Topoloxía, Facultade de Matemáticas, Universidade de Santiago de Compostela, Santiago De Compostela 15782, Spain

2. Faculty of Mathematics, Universitatea "Alexandru Ioan Cuza" din Iaşi, Iaşi, 700506, Romania

Abstract

In this paper, we study symmetries, Newtonoid vector fields, conservation laws, Noether's theorem and its converse, in the framework of the k-symplectic formalism, using the Frölicher–Nijenhuis formalism on the space of k1-velocities of the configuration manifold.For the case k = 1, it is well known that Cartan symmetries induce and are induced by constants of motions, and these results are known as Noether's theorem and its converse. For the case k > 1, we provide a new proof for Noether's theorem, which shows that, in the k-symplectic formalism, each Cartan symmetry induces a conservation law. We prove that, under some assumptions, the converse of Noether's theorem is also true and we provide examples when this is not the case. We also study the relations between dynamical symmetries, Newtonoid vector fields, Cartan symmetries and conservation laws, showing when one of them will imply the others. We use several examples of partial differential equations to illustrate when these concepts are related and when they are not.

Publisher

World Scientific Pub Co Pte Lt

Subject

Mathematical Physics,Statistical and Nonlinear Physics

Reference47 articles.

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Some contributions to k-contact Lagrangian field equations, symmetries and dissipation laws;Reviews in Mathematical Physics;2024-04-13

2. Symmetries of Hamiltonian Systems on Lie Algebroids;Journal of Mathematical Sciences;2023-10

3. Симметрии гамильтоновых систем на алгеброидах Ли;Итоги науки и техники. Серия «Современная математика и ее приложения. Тематические обзоры»;2020-05

4. A review of some geometric integrators;Advanced Modeling and Simulation in Engineering Sciences;2018-06-13

5. Symmetries of second order differential equations on Lie algebroids;Journal of Geometry and Physics;2017-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3