SPECTRAL ANALYSIS AND TIME-DEPENDENT SCATTERING THEORY ON MANIFOLDS WITH ASYMPTOTICALLY CYLINDRICAL ENDS

Author:

RICHARD S.1,TIEDRA DE ALDECOA R.2

Affiliation:

1. Institut Camille Jordan, CNRS, UMR5208, Université de Lyon, Université Lyon 1, 43 blvd du 11 novembre 1918, F-69622 Villeurbanne-Cedex, France

2. Facultad de Matemáticas, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, Santiago, Chile

Abstract

We review the spectral analysis and the time-dependent approach of scattering theory for manifolds with asymptotically cylindrical ends. For the spectral analysis, higher order resolvent estimates are obtained via Mourre theory for both short-range and long-range behaviors of the metric and the perturbation at infinity. For the scattering theory, the existence and asymptotic completeness of the wave operators is proved in a two-Hilbert spaces setting. A stationary formula as well as mapping properties for the scattering operator are derived. The existence of time delay and its equality with the Eisenbud–Wigner time delay is finally presented. Our analysis mainly differs from the existing literature on the choice of a simpler comparison dynamics as well as on the complementary use of time-dependent and stationary scattering theories.

Publisher

World Scientific Pub Co Pte Lt

Subject

Mathematical Physics,Statistical and Nonlinear Physics

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Wave Asymptotics for Waveguides and Manifolds with Infinite Cylindrical Ends;International Mathematics Research Notices;2021-09-15

2. Spectral and Scattering Properties of Quantum Walks on Homogenous Trees of Odd Degree;Annales Henri Poincaré;2021-06-03

3. Resolvent estimates on asymptotically cylindrical manifolds and on the half line;Annales scientifiques de l'École Normale Supérieure;2021

4. Quantum time delay for unitary operators: General theory;Reviews in Mathematical Physics;2019-06-25

5. Quantum walks with an anisotropic coin I: spectral theory;Letters in Mathematical Physics;2017-09-27

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3