Affiliation:
1. Centre de Physique Théorique-CNRS, Luminy, Case 907-F-13288, Marseille, Cedex 9, France
Abstract
The geometry of graded principal bundles is discussed in the framework of graded manifold theory of Kostant–Berezin–Leites. We first review the basic elements of this theory establishing at the same time supplementary properties of graded Lie groups and their actions. Particular emphasis is given in introducing and studying free actions in the graded context. Next, we investigate the geometry of graded principal bundles; we prove that they have several properties analogous to those of ordinary principal bundles. In particular, we show that the sheaf of vertical derivations on a graded principal bundle coincides with the graded distribution induced by the action of the structure graded Lie group. This result leads to a natural definition of the graded connection in terms of graded distributions; its relation with Lie superalgebra-valued graded differential forms is also exhibited. Finally, we define the curvature for the graded connection and we prove that the curvature controls the involutivity of the horizontal graded distribution corresponding to the graded connection.
Publisher
World Scientific Pub Co Pte Lt
Subject
Mathematical Physics,Statistical and Nonlinear Physics
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献