Theory of Connections on Graded Principal Bundles

Author:

Stavracou T.1

Affiliation:

1. Centre de Physique Théorique-CNRS, Luminy, Case 907-F-13288, Marseille, Cedex 9, France

Abstract

The geometry of graded principal bundles is discussed in the framework of graded manifold theory of Kostant–Berezin–Leites. We first review the basic elements of this theory establishing at the same time supplementary properties of graded Lie groups and their actions. Particular emphasis is given in introducing and studying free actions in the graded context. Next, we investigate the geometry of graded principal bundles; we prove that they have several properties analogous to those of ordinary principal bundles. In particular, we show that the sheaf of vertical derivations on a graded principal bundle coincides with the graded distribution induced by the action of the structure graded Lie group. This result leads to a natural definition of the graded connection in terms of graded distributions; its relation with Lie superalgebra-valued graded differential forms is also exhibited. Finally, we define the curvature for the graded connection and we prove that the curvature controls the involutivity of the horizontal graded distribution corresponding to the graded connection.

Publisher

World Scientific Pub Co Pte Lt

Subject

Mathematical Physics,Statistical and Nonlinear Physics

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Super fiber bundles, connection forms, and parallel transport;Journal of Mathematical Physics;2021-06-01

2. Chirality, a new key for the definition of the connection and curvature of a Lie-Kac superalgebra;Journal of High Energy Physics;2021-01

3. Dimensional reduction and the equivariant Chern character;Algebraic & Geometric Topology;2019-02-06

4. Graded vector fields and involutive distributions on graded manifolds;Journal of Dynamical Systems and Geometric Theories;2018-07-03

5. Differential Calculus onN-Graded Manifolds;Journal of Mathematics;2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3