EXISTENCE OF SPECTRAL GAPS, COVERING MANIFOLDS AND RESIDUALLY FINITE GROUPS

Author:

LLEDÓ FERNANDO1,POST OLAF2

Affiliation:

1. Department of Mathematics, University Carlos III Madrid, Avda. de la Universidad 30, E-28911 Leganes (Madrid), Spain

2. Institut für Mathematik, Humboldt-Universität zu Berlin, Rudower Chaussee 25, D-12489 Berlin, Germany

Abstract

In the present paper we consider Riemannian coverings (X,g) → (M,g) with residually finite covering group Γ and compact base space (M,g). In particular, we give two general procedures resulting in a family of deformed coverings (X,gε) → (M,gε) such that the spectrum of the Laplacian Δ(Xε,gε) has at least a prescribed finite number of spectral gaps provided ε is small enough. If Γ has a positive Kadison constant, then we can apply results by Brüning and Sunada to deduce that spec Δ(X,gε) has, in addition, band-structure and there is an asymptotic estimate for the number [Formula: see text] of components of spec Δ(X,gε) that intersect the interval [0,λ]. We also present several classes of examples of residually finite groups that fit with our construction and study their interrelations. Finally, we mention several possible applications for our results.

Publisher

World Scientific Pub Co Pte Lt

Subject

Mathematical Physics,Statistical and Nonlinear Physics

Reference53 articles.

1. On the Spectrum of Periodic Schrödinger Operators and a Tower of Coverings

2. T. Adachi, T. Sunada and P. W. Sy, Analyse Algébrique des Perturbations Singulières, II (Marseille-Luminy, 1991), Travaux en Cours 48 (Hermann, Paris, 1994) pp. 125–133.

3. Large gaps in point-coupled periodic systems of manifolds

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Spectral gaps of the Laplacian on differential forms;Differential Geometry and Global Analysis;2022

2. Representation of non-semibounded quadratic forms and orthogonal additivity;Journal of Mathematical Analysis and Applications;2021-03

3. Spectral preorder and perturbations of discrete weighted graphs;Mathematische Annalen;2020-10-07

4. Spectral gaps on complete Riemannian manifolds;Geometry of Submanifolds;2020

5. The spectrum of the Laplacian on forms over flat manifolds;Mathematische Zeitschrift;2019-11-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3