Affiliation:
1. LMR CNRS FRE 2011, Université de Reims Champagne-Ardenne, Moulin de la Housse, BP 1039, 51687, REIMS Cedex 2, France
Abstract
This article is concerned with compositions in the context of three standard quantizations in the framework of Fock spaces, namely, anti-Wick, Wick and Weyl quantizations. The first one is a composition of states also known as a Wick product and is closely related to the standard scattering identification operator encountered in Quantum Electrodynamics for issues on time dynamics (see [ 29 , 13 ]). Anti-Wick quantization and Segal–Bargmann transforms are implied here for that purpose. The other compositions are for observables (operators in some specific classes) for the Wick and Weyl symbols. For the Wick and Weyl symbols of the composition of two operators, we obtain an absolutely converging series and for the Weyl symbol, the remainder terms up to any orders of the expansion are controlled, still in the Fock space framework.
Publisher
World Scientific Pub Co Pte Lt
Subject
Mathematical Physics,Statistical and Nonlinear Physics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献