On the validity of the Boltzmann equation for short range potentials

Author:

Pulvirenti M.12,Saffirio C.13,Simonella S.14

Affiliation:

1. Dipartimento di Matematica, Università di Roma La Sapienza, Piazzale Aldo Moro 5, 00185 Roma, Italy

2. International Research Center for Mathematics and Mechanics of Complex Systems MEMOCS, Università di L'Aquila, Cisterna di Latina, 04012, Italy

3. Institute of Applied Mathematics, University of Bonn, Endenicher Allee 60, 53115 Bonn, Germany

4. Zentrum Mathematik, TU München, Boltzmannstrasse 3, 85748 Garching, Germany

Abstract

We consider a classical system of point particles interacting by means of a short range potential. We prove that, in the low-density (Boltzmann–Grad) limit, the system behaves, for short times, as predicted by the associated Boltzmann equation. This is a revisitation and an extension of the thesis of King [9] (that appeared after the well-known result of Lanford [10] for hard spheres) and of a recent paper by Gallagher et al. [5]. Our analysis applies to any stable and smooth potential. In the case of repulsive potentials (with no attractive parts), we estimate explicitly the rate of convergence.

Publisher

World Scientific Pub Co Pte Lt

Subject

Mathematical Physics,Statistical and Nonlinear Physics

Cited by 62 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3