Optimal quantum tomography with constrained measurements arising from unitary bases

Author:

Chaturvedi S.1ORCID,Ghosh S.2ORCID,Parthasarathy K. R.3,Singh Ajit Iqbal4ORCID

Affiliation:

1. Department of Physics, Indian Institute of Science, Education and Research–Bhopal, Bhopal Bypass Road, Bhauri, Bhopal 462066, India

2. Optics & Quantum Information Group, The Institute of Mathematical Sciences, HBNI, C.I.T. Campus, Taramani, Chennai-600113, India

3. Theoretical Statistics and Mathematics Unit, Indian Statistical Institute, 7, S.J.S. Sansanwal Marg, New Delhi, 110 016, India

4. INSA Emeritus Scientist, The Indian National Science Academy, New Delhi, 110 002, India

Abstract

The purpose of this paper is to introduce techniques of obtaining optimal ways to determine a [Formula: see text]-level quantum state or distinguish such states. It entails designing constrained elementary measurements extracted from maximal abelian subsets of a unitary basis [Formula: see text] for the operator algebra [Formula: see text] of a Hilbert space [Formula: see text] of finite dimension [Formula: see text] or, after choosing an orthonormal basis for [Formula: see text], for the ⋆-algebra [Formula: see text] of complex matrices of order [Formula: see text]. Illustrations are given for the techniques. It is shown that the Schwinger basis [Formula: see text] of unitary operators can give for [Formula: see text], a product of primes [Formula: see text] and [Formula: see text], the ideal number [Formula: see text] of rank one projectors that have a few quantum mechanical overlaps (or, for that matter, a few angles between the corresponding unit vectors). Finally, we give a combination of the tensor product and constrained elementary measurement techniques to deal with all [Formula: see text], though with more overlaps or angles depending on the factorization of [Formula: see text] as a product of primes or their powers like [Formula: see text] with [Formula: see text], all primes, [Formula: see text] for [Formula: see text], or other types. A comparison is drawn for different forms of unitary bases for the Hilbert space factors of the tensor product like [Formula: see text] or [Formula: see text], where [Formula: see text] is the Galois field of size [Formula: see text] and [Formula: see text] is the ring of integers modulo [Formula: see text]. Even though as Hilbert spaces they are isomorphic, but quantum mechanical system-wise, these tensor products are different. In the process, we also study the equivalence relation on unitary bases defined by R. F. Werner [J. Phys. A: Math. Gen. 34 (2001) 7081–7094], connect it to local operations on maximally entangled vectors bases, find an invariant for equivalence classes in terms of certain commuting systems, called fan representations, and, relate it to mutually unbiased bases and Hadamard matrices. Illustrations are given in the context of Latin squares and projective representations as well.

Publisher

World Scientific Pub Co Pte Lt

Subject

Mathematical Physics,Statistical and Nonlinear Physics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3