Scattering on periodic metric graphs

Author:

Korotyaev Evgeny1,Saburova Natalia2

Affiliation:

1. Department of Mathematical Analysis, Saint Petersburg State University, Universitetskaya nab. 7/9, St. Petersburg, 199034, Russia

2. Department of Mathematical Analysis, Algebra and Geometry, Northern (Arctic) Federal University, Severnaya Dvina Emb. 17, Arkhangelsk, 163002, Russia

Abstract

We consider the Laplacian on a periodic metric graph and obtain its decomposition into a direct fiber integral in terms of the corresponding discrete Laplacian. Eigenfunctions and eigenvalues of the fiber metric Laplacian are expressed explicitly in terms of eigenfunctions and eigenvalues of the corresponding fiber discrete Laplacian and eigenfunctions of the Dirichlet problem on the unit interval. We show that all these eigenfunctions are uniformly bounded. We apply these results to the periodic metric Laplacian perturbed by real integrable potentials. We prove the following: (a) the wave operators exist and are complete, (b) the standard Fredholm determinant is well-defined and is analytic in the upper half-plane without any modification for any dimension, (c) the determinant and the corresponding S-matrix satisfy the Birman–Krein identity.

Funder

Russian Science Support Foundation

Publisher

World Scientific Pub Co Pte Lt

Subject

Mathematical Physics,Statistical and Nonlinear Physics

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Trace formulas for time periodic complex Hamiltonians on lattice;Journal of Mathematical Analysis and Applications;2024-06

2. Inverse spectral problem for the Schrödinger operator on the square lattice;Inverse Problems;2024-03-25

3. Trace Formulas for Schrödinger Operators on a Lattice;Russian Journal of Mathematical Physics;2022-12

4. Spectra of graphenes with variant edges;Operators and Matrices;2022

5. Eigenvalues of periodic difference operators on lattice octants;Journal of Mathematical Analysis and Applications;2021-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3