MINIMAL LENGTH IN QUANTUM SPACE AND INTEGRATIONS OF THE LINE ELEMENT IN NONCOMMUTATIVE GEOMETRY

Author:

MARTINETTI PIERRE12,MERCATI FLAVIO13,TOMASSINI LUCA4

Affiliation:

1. Dipartimento di Fisica, Università di Roma "Sapienza", I-00185, Italy

2. CMTP and Dipartimento di Matematica, Università di Roma Tor Vergata, I-00133, Italy

3. Departamento de Física Teórica, Universidad de Zaragoza, S-50009, Spain

4. Dipartimento di Scienze, Università di Chieti-Pescara, G. d'Annunzio, I-65127, Italy

Abstract

We question the emergence of a minimal length in quantum spacetime, comparing two notions that appeared at various points in the literature: on the one side, the quantum length as the spectrum of an operator L in the Doplicher Fredenhagen Roberts (DFR) quantum spacetime, as well as in the canonical noncommutative spacetime (θ-Minkowski); on the other side, Connes' spectral distance in noncommutative geometry. Although in the Euclidean space the two notions merge into the one of geodesic distance, they yield distinct results in the noncommutative framework. In particular, in the Moyal plane, the quantum length is bounded above from zero while the spectral distance can take any real positive value, including infinity. We show how to solve this discrepancy by doubling the spectral triple. This leads us to introduce a modified quantum length d′L, which coincides exactly with the spectral distance dD on the set of states of optimal localization. On the set of eigenstates of the quantum harmonic oscillator — together with their translations — d′L and dD coincide asymptotically, both in the high energy and large translation limits. At small energy, we interpret the discrepancy between d′L and dD as two distinct ways of integrating the line element on a quantum space. This leads us to propose an equation for a geodesic on the Moyal plane.

Publisher

World Scientific Pub Co Pte Lt

Subject

Mathematical Physics,Statistical and Nonlinear Physics

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3