Higher U(1)-gerbe connections in geometric prequantization

Author:

Fiorenza Domenico1,Rogers Christopher L.2,Schreiber Urs3

Affiliation:

1. Dipartimento di Matematica, La Sapienza Università di Roma, Piazzale Aldo Moro 2, 00185 Rome, Italy

2. Department of Mathematics and Statistics, University of Nevada, Reno, 1664 N. Virginia St., Reno, NV 89557-0084, USA

3. Institute of Mathematics, Czech Academy of Sciences, Žitna 25, 115 67 Praha 1, Czech Republic

Abstract

We promote geometric prequantization to higher geometry (higher stacks), where a prequantization is given by a higher principal connection (a higher gerbe with connection). We show fairly generally how there is canonically a tower of higher gauge groupoids and Courant groupoids assigned to a higher prequantization, and establish the corresponding Atiyah sequence as an integrated Kostant–Souriau [Formula: see text]-group extension of higher Hamiltonian symplectomorphisms by higher quantomorphisms. We also exhibit the [Formula: see text]-group cocycle which classifies this extension and discuss how its restrictions along Hamiltonian [Formula: see text]-actions yield higher Heisenberg cocycles. In the special case of higher differential geometry over smooth manifolds, we find the [Formula: see text]-algebra extension of Hamiltonian vector fields — which is the higher Poisson bracket of local observables — and show that it is equivalent to the construction proposed by the second author in [Formula: see text]-plectic geometry. Finally, we indicate a list of examples of applications of higher prequantization in the extended geometric quantization of local quantum field theories and specifically in string geometry.

Publisher

World Scientific Pub Co Pte Lt

Subject

Mathematical Physics,Statistical and Nonlinear Physics

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Reduction of $L_\infty$-Algebras of Observables on Multisymplectic Manifolds;Symmetry, Integrability and Geometry: Methods and Applications;2024-07-03

2. Smooth generalized symmetries of quantum field theories;Journal of Geometry and Physics;2024-07

3. Shifted geometric quantization;Journal of Geometry and Physics;2023-12

4. Quantum field theoretic representation of Wilson surfaces. Part I. Higher coadjoint orbit theory;Journal of High Energy Physics;2022-10-20

5. Principal $$\infty $$-bundles and smooth string group models;Mathematische Annalen;2022-09-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3