Affiliation:
1. Department of Mathematics, Hokkaido University, Sapporo 060-0810, Japan
Abstract
We present two types of result for approximately inner one-parameter automorphism groups (referred to as AI flows hereafter) of separable C*-algebras. First, if there is an irreducible representation π of a separable C*-algebra A such that π(A) does not contain non-zero compact operators, then there is an AI flow α such that π is α-covariant and α is far from uniformly continuous in the sense that α induces a flow on π(A) which has full Connes spectrum. Second, if α is an AI flow on a separable C*-algebra A and π is an α-covariant irreducible representation, then we can choose a sequence (hn) of self-adjoint elements in A such that αt is the limit of inner flows Ad eithn and the sequence π(eithn) of one-parameter unitary groups (referred to as unitary flows hereafter) converges to a unitary flow which implements α in π. This latter result will be extended to cover the case of weakly inner type I representations. In passing we shall also show that if two representations of a separable simple C*-algebra on a separable Hilbert space generate the same von Neumann algebra of type I, then there is an approximately inner automorphism which sends one into the other up to equivalence.
Publisher
World Scientific Pub Co Pte Lt
Subject
Mathematical Physics,Statistical and Nonlinear Physics
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献