A NEW FEASIBLE NATURAL LANGUAGE DATABASE QUERY METHOD

Author:

BOONJING VEERA1,HSU CHENG2

Affiliation:

1. Mathematics and Computer Science, King Mongkut's Institute of Technology, Ladkrabang, Bangkok, 10520, Thailand

2. Decision Sciences and Engineering Systems, Rensselaer Polytechnic Institute, Troy, NY 12180-3590, USA

Abstract

A metadata search approach is proposed to provide practical solutions to the natural language database query problem; where the metadata grow in largely linear manner and the search is linguistics-free. A new class of reference dictionary integrates four types of enterprise metadata: enterprise information models, database values, user-words, and query cases. The layered and scalable information models allow user-words to stay in original forms as users articulated them, as opposed to relying on permutations of individual words contained in the original query. A graphical representation method turns the dictionary into searchable graphs representing all possible interpretations of the input. A branch-and-bound algorithm then identifies optimal interpretations, which lead to SQL implementation of the original queries. Query cases enhance both the metadata and the search of metadata, as well as providing case-based reasoning to directly answer the queries. This design assures feasible solutions at the termination of the search, even when the search is incomplete (i.e., the results contain the correct answer to the original query). The necessary condition is that the text input contains at least one entry in the reference dictionary. The sufficient condition is that the text input contains a set of entries corresponding to a complete, correct single SQL query. Laboratory testing shows that the system obtained accurate results for most cases that satisfied only the necessary condition.

Publisher

World Scientific Pub Co Pte Lt

Subject

Artificial Intelligence,Artificial Intelligence

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Natural Language Interfaces to Databases: An Analysis of the State of the Art;Recent Advances on Hybrid Intelligent Systems;2013

2. An Efficient Denotational Semantics for Natural Language Database Queries;Natural Language Processing and Information Systems

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3