INTELLIGENT DATA ANALYSIS OF BREAST CANCER BASED ON ROUGH SET THEORY

Author:

HASSANIEN ABOUL ELLA1

Affiliation:

1. Kuwait University, College of Business Adminstration, Quantitative Methods and Information Systems Department, P.O.Box 5969 Safat, Code no. 13060, Kuwait

Abstract

Extensive amounts of knowledge and data stored in medical databases require the development of specialized tools for storing, accessing, analysis, and effectiveness usage of stored knowledge and data. Intelligent methods such as neural networks, fuzzy sets, decision trees, and expert systems are, slowly but steadily, applied in the medical fields. Recently, rough set theory is a new intelligent technique was used for the discovery of data dependencies, data reduction, approximate set classification, and rule induction from databases.In this paper, we present a rough set method for generating classification rules from a set of observed 360 samples of the breast cancer data. The attributes are selected, normalized and then the rough set dependency rules are generated directly from the real value attribute vector. Then the rough set reduction technique is applied to find all reducts of the data which contains the minimal subset of attributes that are associated with a class label for classification. Experimental results from applying the rough set analysis to the set of data samples are given and evaluated. In addition, the generated rules are also compared to the well-known ID3 classifier algorithm. The study showed that the theory of rough sets seems to be a useful tool for inductive learning and a valuable aid for building expert systems.

Publisher

World Scientific Pub Co Pte Lt

Subject

Artificial Intelligence,Artificial Intelligence

Reference27 articles.

1. Aboul ella Hassanien, International Journal of Studies in Infomratics and Control Journal 12 (2003) pp. 33–39.

2. Dynamic reducts as a tool for extracting laws from decisions tables

3. Data Mining Methods for Knowledge Discovery

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3