An Application of Wavelet-Based Vector Quantization in Target Recognition

Author:

Chan Lipchen Alex1,Nasrabadi Nasser M.2

Affiliation:

1. Electrical and Computer Engineering, University at Buffalo, 201 Bell Hall, Buffalo, NY 14260-2050, USA

2. US Army Research Laboratory, ATTN: AMSRL-SE-SE, 2800 Powder Mill Road, Adelphi, MD 20783-1197, USA

Abstract

An automatic target recognition (ATR) classifier is constructed that uses a set of dedicated vector quantizers (VQs). The background pixels in each input image are properly clipped out by a set of aspect windows. The extracted target area for each aspect window is then enlarged to a fixed size, after which a wavelet decomposition splits the enlarged extraction into several subbands. A dedicated VQ codebook is generated for each subband of a particular target class at a specific range of aspects. Thus, each codebook consists of a set of feature templates that are iteratively adapted to represent a particular subband of a given target class at a specific range of aspects. These templates are then further trained by a modified learning vector quantization (LVQ) algorithm that enhances their discriminatory characteristics.

Publisher

World Scientific Pub Co Pte Lt

Subject

Artificial Intelligence,Artificial Intelligence

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Rotation Invariant Automatic Infrared Target Recognition using G-Radon;MATEC Web of Conferences;2016

2. Automatic Target Recognition in Infrared Imagery Using Dense HOG Features and Relevance Grouping of Vocabulary;2014 IEEE Conference on Computer Vision and Pattern Recognition Workshops;2014-06

3. Sparsity-motivated automatic target recognition;Applied Optics;2011-03-29

4. Automatic target recognition based on simultaneous sparse representation;2010 IEEE International Conference on Image Processing;2010-09

5. Sparsity inspired automatic target recognition;Automatic Target Recognition XX; Acquisition, Tracking, Pointing, and Laser Systems Technologies XXIV; and Optical Pattern Recognition XXI;2010-04-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3