Communication-Sensitive Pseudo-Tree Heuristics for DCOP Algorithms

Author:

Tabakhi Atena M.1,Yeoh William1,Tourani Reza2,Natividad Francisco3,Misra Satyajayant3

Affiliation:

1. Department of Computer Science and Engineering, Washington University in St. Louis, Saint Louis, Missouri, USA

2. Department of Computer Science, Saint Louis University, Saint Louis, Missouri, USA

3. Department of Computer Science, New Mexico State University, Las Cruces, New Mexico, USA

Abstract

Distributed Constraint Optimization Problem (DCOP) is a powerful paradigm to model multi-agent systems through enabling multiple agents to coordinate with each other to solve a problem. These agents are often assumed to be cooperative, that is, they communicate with other agents in order to optimize a global objective. However, the communication times between all pairs of agents are assumed to be identical in the evaluation of most DCOP algorithms. This assumption is impractical in almost all real-world applications. In this paper, we study the impact of empirically evaluating a DCOP algorithm under the assumption that communication times between pairs of agents can vary. In addition, we evaluate a DCOP algorithm using ns-2, a discrete-event simulator that is widely used in the computer networking community, to simulate the communication times, as opposed to the standard DCOP simulators that are used to evaluate DCOP algorithms in the AI community. Furthermore, we propose heuristics that exploit the non-uniform communication times to speed up DCOP algorithms that operate on pseudo-trees. Our empirical results demonstrate that the proposed heuristics improve the runtime of those algorithms up to 20%. These heuristics are evaluated on different benchmarks such as scale-free graphs, random graphs, and an instance of the smart grid, Customer-Driven Microgrid (CDMG) application.

Publisher

World Scientific Pub Co Pte Lt

Subject

Artificial Intelligence,Artificial Intelligence

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3