Affiliation:
1. College of Computer Science and Technology, Chongqing University of Posts and Telecommunications, Chongqing 400065, P. R. China
Abstract
Outlier detection is a difficult problem due to its time complexity being quadratic or cube in most cases, which makes it necessary to develop corresponding acceleration algorithms. Since the index structure (c.f. R tree) is used in the main acceleration algorithms, those approaches deteriorate when the dimensionality increases. In this paper, an approach named VBOD (vibration-based outlier detection) is proposed, in which the main variants assess the vibration. Since the basic model and approximation algorithm FASTVBOD do not need to compute the index structure, their performances are less sensitive to increasing dimensions than traditional approaches. The basic model of this approach has only quadratic time complexity. Furthermore, accelerated algorithms decrease time complexity to [Formula: see text]. The fact that this approach does not rely on any parameter selection is another advantage. FASTVBOD was compared with other state-of-the-art algorithms, and it performed much better than other methods especially on high dimensional data.
Publisher
World Scientific Pub Co Pte Lt
Subject
Artificial Intelligence,Artificial Intelligence
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献