Affiliation:
1. Department of Computer Science, Rochester Institute of Technology, Rochester, New York, USA
Abstract
Computational modeling of the human visual system is of current interest to developers of artificial vision systems, primarily because a biologically-inspired model can offer solutions to otherwise intractable image understanding problems. The purpose of this study is to present a biologically-inspired model of selective perception that augments a stimulus-driven approach with a high-level algorithm that takes into account particularly informative regions in the scene. The representation is compact and given in the form of a topographic map of relative perceptual conspicuity values. Other recent attempts at compact scene representation consider only low-level information that codes salient features such as color, edge, and luminance values. The previous attempts do not correlate well with subjects' fixation locations during viewing of complex images or natural scenes. This study uses high-level information in the form of figure/ground segmentation, potential object detection, and task-specific location bias. The results correlate well with the fixation densities of human viewers of natural scenes, and can be used as a preprocessing module for image understanding or intelligent surveillance applications.
Publisher
World Scientific Pub Co Pte Lt
Subject
Artificial Intelligence,Artificial Intelligence
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献