Optimizing the Learning Process of Feedforward Neural Networks Using Lightning Search Algorithm

Author:

Faris Hossam1,Aljarah Ibrahim1,Al-Madi Nailah2,Mirjalili Seyedali3

Affiliation:

1. Business Information Technology Department, King Abdullah II School for Information Technology, The University of Jordan, Amman, Jordan

2. The King Hussein Faculty of Computing Sciences, Princess Sumaya University for Technology, Amman, Jordan

3. School of Information and Communication Technology, Griffith University, Nathan, Brisbane, QLD 4111, Australia

Abstract

Evolutionary Neural Networks are proven to be beneficial in solving challenging datasets mainly due to the high local optima avoidance. Stochastic operators in such techniques reduce the probability of stagnation in local solutions and assist them to supersede conventional training algorithms such as Back Propagation (BP) and Levenberg-Marquardt (LM). According to the No-Free-Lunch (NFL), however, there is no optimization technique for solving all optimization problems. This means that a Neural Network trained by a new algorithm has the potential to solve a new set of problems or outperform the current techniques in solving existing problems. This motivates our attempts to investigate the efficiency of the recently proposed Evolutionary Algorithm called Lightning Search Algorithm (LSA) in training Neural Network for the first time in the literature. The LSA-based trainer is benchmarked on 16 popular medical diagnosis problems and compared to BP, LM, and 6 other evolutionary trainers. The quantitative and qualitative results show that the LSA algorithm is able to show not only better local solutions avoidance but also faster convergence speed compared to the other algorithms employed. In addition, the statistical test conducted proves that the LSA-based trainer is significantly superior in comparison with the current algorithms on the majority of datasets.

Publisher

World Scientific Pub Co Pte Lt

Subject

Artificial Intelligence,Artificial Intelligence

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3