A REGRESSION MIXTURE MODEL WITH SPATIAL CONSTRAINTS FOR CLUSTERING SPATIOTEMPORAL DATA

Author:

BLEKAS K.1,NIKOU C.1,GALATSANOS N.1,TSEKOS N. V.2

Affiliation:

1. Department of Computer Science, University of Ioannina, 45110 Ioannina, Greece

2. School of Medicine, Washington University in St. Louis, Washington, USA

Abstract

We present a new approach for curve clustering designed for analysis of spatiotemporal data. Such data contains both spatial and temporal patterns that we desire to capture. The proposed methodology is based on regression and Gaussian mixture modeling. The novelty of the herein work is the incorporation of spatial smoothness constraints in the form of a prior for the data labels. This allows to take into account the property of spatiotemporal data according to which spatially adjacent data points have higher probability to belong to the same cluster. The proposed model can be formulated as a Maximum a Posteriori (MAP) problem, where the Expectation Maximization (EM) algorithm is used to estimate the model parameters. Several numerical experiments with both simulated data and real cardiac perfusion MRI data are used for evaluating the methodology. The results are promising and demonstrate the value of the proposed approach.

Publisher

World Scientific Pub Co Pte Lt

Subject

Artificial Intelligence,Artificial Intelligence

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Interpolation and Prediction of Spatiotemporal XML Data Integrated With Grey Dynamic Model;Advances in Systems Analysis, Software Engineering, and High Performance Computing;2023-12-15

2. Merging Student’s-t and Rayleigh distributions regression mixture model for clustering time-series;Neurocomputing;2017-11

3. Interpolation and Prediction of Spatiotemporal Data Based on XML Integrated with Grey Dynamic Model;ISPRS International Journal of Geo-Information;2017-04-07

4. Sparse regression mixture modeling with the multi-kernel relevance vector machine;Knowledge and Information Systems;2013-10-30

5. The Mixture of Multi-kernel Relevance Vector Machines Model;2012 IEEE 12th International Conference on Data Mining;2012-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3