KNOWLEDGE TRANSFER IN DEEP CONVOLUTIONAL NEURAL NETS

Author:

GUTSTEIN STEVEN1,FUENTES OLAC1,FREUDENTHAL ERIC1

Affiliation:

1. Computer Science Department, University of Texas at El Paso, El Paso, Texas, 79968, USA

Abstract

Knowledge transfer is widely held to be a primary mechanism that enables humans to quickly learn new complex concepts when given only small training sets. In this paper, we apply knowledge transfer to deep convolutional neural nets, which we argue are particularly well suited for knowledge transfer. Our initial results demonstrate that components of a trained deep convolutional neural net can constructively transfer information to another such net. Furthermore, this transfer is completed in such a way that one can envision creating a net that could learn new concepts throughout its lifetime. The experiments we performed involved training a Deep Convolutional Neural Net (DCNN) on a large training set containing 20 different classes of handwritten characters from the NIST Special Database 19. This net was then used as a foundation for training a new net on a set of 20 different character classes from the NIST Special Database 19. The new net would keep the bottom layers of the old net (i.e. those nearest to the input) and only allow the top layers to train on the new character classes. We purposely used small training sets for the new net to force it to rely as much as possible upon transferred knowledge as opposed to a large and varied training set to learn the new set of hand written characters. Our results show a clear advantage in relying upon transferred knowledge to learn new tasks when given small training sets, if the new tasks are sufficiently similar to the previously mastered one. However, this advantage decreases as training sets increase in size.

Publisher

World Scientific Pub Co Pte Lt

Subject

Artificial Intelligence,Artificial Intelligence

Reference18 articles.

1. Lorien Y. Pratt, Advances in Neural Information Processing Systems 5, eds. Stephen José Hanson, Jack D. Cowan and C. Lee Giles (Morgan Kaufmann, San Mateo, CA, 1993) pp. 204–211.

2. Rich Caruana, Advances in Neural Information Processing Systems 7, eds. G. Tesauro, D. Touretzky and T. Leen (The MIT Press, 1995) pp. 657–664.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3