LEARNING PROCESS BEHAVIOR FOR FAULT DETECTION

Author:

PEREIRA CÁSSIO M. M.1,DE MELLO RODRIGO F.1

Affiliation:

1. Institute of Mathematical Sciences and Computing, University of São Paulo, Av. Trabalhador Sancarlense, 400 Centro, São Carlos, São Paulo, 13560-970, Brazil

Abstract

Recently, there has been an increased interest in self-healing systems. These types of systems are able to cope with failures in the environment they execute and work continuously by taking proactive actions to correct these problems. The detection of faults plays a prominent role in self-healing systems, as faults are the original causes of failures. Fault detection techniques proposed in the literature have been based on three mainstream approaches: process heartbeats, statistical analysis and machine learning. However, these approaches present limitations. Heartbeat-based techniques only detect failures, not faults. Statistical approaches generally assume linear models. Most machine learning techniques assume the data is independent and identically distributed. In order to overcome all these limitations we propose a new approach to address fault detection, which also gives insight into how process behavior changes over time in the presence of faults. Experiments show that the proposed approach achieves a twofold increase in F -measure when compared to Support Vector Machines (SVM) and Auto-Regressive Integrated Moving Average (ARIMA).

Publisher

World Scientific Pub Co Pte Lt

Subject

Artificial Intelligence,Artificial Intelligence

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3