Affiliation:
1. Computer Science and Engineering Department, National Institute of Technology Agartala, Tripura 799046, India
2. Wipro AI Labs, Bengaluru, Karnataka 560100, India
Abstract
Sentiment analysis is a circumstantial analysis of text, identifying the social sentiment to better understand the source material. The article addresses sentiment analysis of an English-Hindi and English-Bengali code-mixed textual corpus collected from social media. Code-mixing is an amalgamation of multiple languages, which previously mainly was associated with spoken language. However, social media users also deploy it to communicate in ways that tend to be somewhat casual. The coarse nature of social media text poses challenges for many language processing applications. Here, the focus is on the low predictive nature of traditional machine learners when compared to Deep Learning counterparts, including the contextual language representation model BERT (Bidirectional Encoder Representations from Transformers), on the task of extracting user sentiment from code-mixed texts. Three deep learners (a BiLSTM CNN, a Double BiLSTM and an Attention-based model) attained accuracy 20–60% greater than traditional approaches on code-mixed data, and were for comparison also tested on monolingual English data.
Publisher
World Scientific Pub Co Pte Lt
Subject
Artificial Intelligence,Artificial Intelligence
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献