FEATURE SELECTION FOR SUPPORT VECTOR MACHINES USING GENETIC ALGORITHMS

Author:

FRÖHLICH HOLGER1,CHAPELLE OLIVIER1,SCHÖLKOPF BERNHARD1

Affiliation:

1. Department Empirical Inference, Max-Planck-Institute of Biological Cybernetics, 72076 Tübingen, Germany

Abstract

The problem of feature selection is a difficult combinatorial task in Machine Learning and of high practical relevance, e.g. in bioinformatics. Genetic Algorithms (GAs) offer a natural way to solve this problem. In this paper we present a special Genetic Algorithm, which especially takes into account the existing bounds on the generalization error for Support Vector Machines (SVMs). This new approach is compared to the traditional method of performing cross-validation and to other existing algorithms for feature selection.

Publisher

World Scientific Pub Co Pte Lt

Subject

Artificial Intelligence,Artificial Intelligence

Reference16 articles.

1. Adv. in Neural Inf. Proc. Syst. 12;Chapelle O.,2000

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Analyzing GNSS Measurements to Detect and Predict Bridge Movements Using the Kalman Filter (KF) and Neural Network (NN) Techniques;Geomatics;2021-02-07

2. A survey on swarm intelligence approaches to feature selection in data mining;Swarm and Evolutionary Computation;2020-05

3. Evolutionary Kernel Learning;Encyclopedia of Machine Learning and Data Mining;2017

4. Evolutionary Kernel Learning;Encyclopedia of Machine Learning and Data Mining;2016

5. A Note on Generalization Loss When Evolving Adaptive Pattern Recognition Systems;IEEE Transactions on Evolutionary Computation;2013-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3