Speckle Noise Reduction of Medical Imaging via Logistic Density in Redundant Wavelet Domain

Author:

Kittisuwan Pichid1

Affiliation:

1. Department of Telecommunication Engineering, Faculty of Engineering, Rajamangala University of Technology, Rattanakosin, Nakhon Pathom, Thailand

Abstract

In the digital world, artificial intelligence tools and machine learning algorithms are widely applied in analysis of medical images for identifying diseases and make diagnoses; for example, to make recognition and classification. Speckle noises affect all medical imaging systems. Therefore, reduction in corrupting speckle noises is very important, since it deteriorates the quality of the medical images and makes tasks such as recognition and classification difficult. Most existing denoising algorithms have been developed for the additive white Gaussian noise (AWGN). However, AWGN is not a speckle noise. Therefore, this work presents a novel speckle noise removal algorithm within the framework of Bayesian estimation and wavelet analysis. This research focuses on noise reduction by the Bayesian with wavelet-based method because it provides good efficiency in noise reduction and spends short time in processing. The subband decomposition of a logarithmically transformed image is best described by a family of heavy-tailed densities such as Logistic distribution. Then, this research proposes the maximum a posteriori (MAP) estimator assuming Logistic random vectors for each parent-child wavelet co-efficient of noise-free log-transformed data and log-normal density for speckle noises. Moreover, a redundant wavelet transform, i.e., the cycle-spinning method, is applied in our proposed methods. In our experiments, our proposed methods give promising denoising results.

Publisher

World Scientific Pub Co Pte Lt

Subject

Artificial Intelligence,Artificial Intelligence

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3