Building Domain Ontologies Out of Folksonomies and Linked Data

Author:

García-Silva Andrés1,García-Castro Leyla Jael2,García Alexander3,Corcho Oscar4

Affiliation:

1. Ontology Engineering Group, Universidad Politécnica de Madrid, Avda. Montepríncipe, Boadilla del Monte, 28660, Spain

2. Department of Computer Languages and Systems, Universitat Jaume I, Castelló de la Plana, 12071, Spain

3. LinkingData I/O LLC, Fort Collins, 80524, CO, USA

4. Ontology Engineering Group, Universidad Politécnica de Madrid, Boadilla del Monte, 28660, Spain

Abstract

In this paper we propose an automatic method for building domain ontologies where we leverage the emerging vocabulary from social tagging systems, and the existing semantics in the Linked Open Data cloud to enrich semantically the terms that shape the domain ontology. We systematically capture a domain vocabulary by searching for relevant resources in the folksonomy graph using a spreading activation strategy. We use the vocabulary to identify domain classes and relationships among them by querying knowledge bases published as linked data. We present a case study in the financial domain where we experiment with different settings and show the feasibility of our approach using real folksonomy data.

Publisher

World Scientific Pub Co Pte Lt

Subject

Artificial Intelligence,Artificial Intelligence

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Extracting ontological knowledge from Java source code using Hidden Markov Models;Open Computer Science;2019-08-12

2. A New Approach for Semi-Automatic Building and Extending a Multilingual Terminology Thesaurus;International Journal on Artificial Intelligence Tools;2019-03

3. Ontology assessment based on linked data principles;International Journal of Web Information Systems;2018-11-05

4. Training a text classifier with a single word using Twitter Lists and domain adaptation;Social Network Analysis and Mining;2016-02-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3