NOGOOD RECORDING FOR STATIC AND DYNAMIC CONSTRAINT SATISFACTION PROBLEMS

Author:

SCHIEX THOMAS1,VERFAILLIE GÉRARD1

Affiliation:

1. C.E.R.T. - O.N.E.R.A., 2, av. Edouard Belin, B.P. 4025, 31055 Toulouse Cedex, France

Abstract

Many AI synthesis problems such as planning, scheduling or design may be encoded in a constraint satisfaction problems (CSP). A CSP is typically defined as the problem of finding any consistent labeling for a fixed set of variables satisfying all given constraints between these variables. However, for many real tasks, the set of constraints to consider may evolve because of the environment or because of user interactions. The notion of dynamic CSP (DCSP) [DD88] has been proposed to represent such evolutions. The problem we consider here is the solution maintenance problem in a DCSP. Naively applying usual satisfaction algorithms to this problem results in redundant search and inefficiency. A general approach to suppress redundancies in case of both restrictions and relaxations is to concisely represent the frontier of the solution space and justifications of this frontier in terms of set of constraints. This paper proposes a new class of constraint recording algorithms called nogood recording that may be used for solving both dynamic CSPs and usual CSP (called static CSPs here). It offers an interesting compromise, polynomially bounded in space, between an ATMS-like (Assumption-based Truth Maintenance System) approach, that would give a precise and exhaustive description of the frontier, and the usual constraint satisfaction algorithms (that discover a new frontier at each execution). We first introduce the principles used for nogood generation and then examine various recording schemes, on top of different tree search algorithms, characterizing the tradeoffs between the amount of recorded constraints and the pruning achieved. We then present experimental results and comparisons with various existing techniques for solving static or dynamic CSP.

Publisher

World Scientific Pub Co Pte Lt

Subject

Artificial Intelligence,Artificial Intelligence

Cited by 62 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3