An Integrated Model Combined ARIMA, EMD with SVR for Stock Indices Forecasting

Author:

Yang Heng-Li1,Lin Han-Chou1

Affiliation:

1. Department of Management Information Systems, National Chengchi University, No. 64, Sec. 2, Zhinan Road, Wenshan District, Taipei City 11605, Taiwan

Abstract

Financial time series forecasting has become a challenge because it is noisy, non-stationary and chaotic. To overcome this limitation, this paper uses empirical mode decomposition (EMD) to aid the financial time series forecasting and proposes an approach via combining ARIMA and SVR (Support Vector Regression) to forecast. The approach contains four steps: (1) using ARIMA to analyze the linear part of the original time series; (2) EMD is used to decompose the dynamics of the non-linear part into several intrinsic mode function (IMF) components and one residual component; (3) developing a SVR model using the above IMFs and residual components as inputs to model the nonlinear part; (4) combining the forecasting results of linear model and nonlinear model. To verify the effectiveness of the proposed approach, four stock indices are chosen as the forecasting targets. Comparing with some existing state-of-the-art models, the proposed approach gives superior results.

Publisher

World Scientific Pub Co Pte Lt

Subject

Artificial Intelligence,Artificial Intelligence

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3