AN ASSESSMENT OF A METRIC SPACE DATABASE INDEX TO SUPPORT SEQUENCE HOMOLOGY

Author:

MAO RUI1,XU WEIJIA1,SINGH NEHA1,MIRANKER DANIEL P.1

Affiliation:

1. Department of Computer Sciences, The University of Texas at Austin, 1 University Station C0500, Austin, TX 78712-0233, USA

Abstract

Hierarchical metric-space clustering methods have been commonly used to organize proteomes into taxonomies. Consequently, it is often anticipated that hierarchical clustering can be leveraged as a basis for scalable database index structures capable of managing the hyper-exponential growth of sequence data. M-tree is one such data structure specialized for the management of large data sets on disk. We explore the application of M-trees to the storage and retrieval of peptide sequence data. Exploiting a technique first suggested by Myers, we organize the database as records of fixed length substrings. Empirical results are promising. However, metric-space indexes are subject to "the curse of dimensionality" and the ultimate performance of an index is sensitive to the quality of the initial construction of the index. We introduce new hierarchical bulk-load algorithm that alternates between top-down and bottom-up clustering to initialize the index. Using the Yeast Proteomes, the bi-directional bulk load produces a more effective index than the existing M-tree initialization algorithms.

Publisher

World Scientific Pub Co Pte Lt

Subject

Artificial Intelligence,Artificial Intelligence

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. RPA: a memory-efficient metric-space recall@<italic>R</italic> ANNS index;Journal of Shenzhen University Science and Engineering;2023-11-01

2. Intelligent Indexing—Boosting Performance in Database Applications by Recognizing Index Patterns;Electronics;2020-08-20

3. Pivot selection for metric-space indexing;International Journal of Machine Learning and Cybernetics;2016-02-03

4. Pivot selection: Dimension reduction for distance-based indexing;Journal of Discrete Algorithms;2012-05

5. TESTING EMBEDDABILITY BETWEEN METRIC SPACES;International Journal of Foundations of Computer Science;2009-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3