A Multi-Agent Based Optimization Method for Combinatorial Optimization Problems

Author:

Sghir Ines1,Jaafar Ines Ben1,Ghédira Khaled1

Affiliation:

1. SOIE/COSMOS, ENSI, Université de la Manouba, 2010 Manouba, Tunisie

Abstract

This paper introduces a Multi-Agent based Optimization Method for Combinatorial Optimization Problems named MAOM-COP. In this method, a set of agents are cooperatively interacting to select the appropriate operators of metaheuristics using learning techniques. MAOM-COP is a flexible architecture, whose objective is to produce more generally applicable search methodologies. In this paper, the MAOM-COP explores genetic algorithm and local search metaheuristics. Using these metaheuristics, the decision-maker agent, the intensification agents and the diversification agents are seeking to improve the search. The diversification agents can be divided into the perturbation agent and the crossover agents. The decision-maker agent decides dynamically which agent to activate between intensification agents and crossover agents within reinforcement learning. If the intensification agents are activated, they apply local search algorithms. During their searches, they can exchange information, as they can trigger the perturbation agent. If the crossover agents are activated, they perform recombination operations. We applied the MAOM-COP to the following problems: quadratic assignment, graph coloring, winner determination and multidimensional knapsack. MAOMCOP shows competitive performances compared with the approaches of the literature.

Publisher

World Scientific Pub Co Pte Lt

Subject

Artificial Intelligence,Artificial Intelligence

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. IAFCO: an intelligent agent-based framework for combinatorial optimization;The Journal of Supercomputing;2024-01-08

2. A Multi-Agent Based Algorithm for Quadratic Assignment Problem;2023 IEEE Latin American Conference on Computational Intelligence (LA-CCI);2023-10-29

3. A Reinforcement Learning-based Iterated Local Search for Software Modularization;2022 8th Iranian Conference on Signal Processing and Intelligent Systems (ICSPIS);2022-12-28

4. Machine learning at the service of meta-heuristics for solving combinatorial optimization problems: A state-of-the-art;European Journal of Operational Research;2022-01

5. Optimal Consensus Recovery of Multi-agent System Subjected to Agent Failure;International Journal on Artificial Intelligence Tools;2020-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3