Affiliation:
1. SOIE/COSMOS, ENSI, Université de la Manouba, 2010 Manouba, Tunisie
Abstract
This paper introduces a Multi-Agent based Optimization Method for Combinatorial Optimization Problems named MAOM-COP. In this method, a set of agents are cooperatively interacting to select the appropriate operators of metaheuristics using learning techniques. MAOM-COP is a flexible architecture, whose objective is to produce more generally applicable search methodologies. In this paper, the MAOM-COP explores genetic algorithm and local search metaheuristics. Using these metaheuristics, the decision-maker agent, the intensification agents and the diversification agents are seeking to improve the search. The diversification agents can be divided into the perturbation agent and the crossover agents. The decision-maker agent decides dynamically which agent to activate between intensification agents and crossover agents within reinforcement learning. If the intensification agents are activated, they apply local search algorithms. During their searches, they can exchange information, as they can trigger the perturbation agent. If the crossover agents are activated, they perform recombination operations. We applied the MAOM-COP to the following problems: quadratic assignment, graph coloring, winner determination and multidimensional knapsack. MAOMCOP shows competitive performances compared with the approaches of the literature.
Publisher
World Scientific Pub Co Pte Lt
Subject
Artificial Intelligence,Artificial Intelligence
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献