Multiple Hidden Markov Model Post Processed with Support Vector Machine to Recognize English Handwritten Numerals

Author:

Prasad Binod Kumar1,Sanyal Goutam1

Affiliation:

1. National Institute of Technology, Durgapur, W.B., India

Abstract

This paper presents rotation and size invariant English numerals recognition system with, competitive recognition rate. The novelty of this paper is the introduction of two unique methods of feature extraction namely Pixel Moment of Inertia (PMI) and Delta Distance Coding (DDC). The proposed Multiple Hidden Markov Model (MHMM) is a two tier model to neutralize the effect of two very frequent writing styles of numerals ‘4’ and ‘7’ on their recognition rates. The novelty of PMI is that it finds moment of all the pixels of a specified zone about the central pixel and not about geometrical centroid of image area. In this paper, PMI has been observed to have an upper hand over centroidal MI. DDC is a new technique of curvature coding, based on distance from a reference level and is similar to the logic behind Delta modulation scheme in Digital Communications. Thus, the current paper correlates two digital domains namely, Digital Image Processing and Digital Communications. Support Vector Machine differentiates two close output classes obtained from classification with MHMM. The overall recognition accuracy rate of 99.17% has been achieved based on MNIST database.

Publisher

World Scientific Pub Co Pte Lt

Subject

Artificial Intelligence,Artificial Intelligence

Reference29 articles.

1. Handwritten digit recognition: investigation of normalization and feature extraction techniques

2. Handwritten Numeral Databases of Indian Scripts and Multistage Recognition of Mixed Numerals

3. B.Wang, L. Zhang and X. Wang, A classification algorithm in Li-K nearest neighbor, in Proc. Fourth Global Congress on Intelligent Systems (IEEE, 2013), DOI:10.1109/GCIS.2013.35.10.1109/GCIS.2013.35

4. Translation, rotation, and scale-invariant object recognition

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3