Affiliation:
1. Department of Computer Science and Engineering, School of Information Science and Engineering, Yunnan University, Kunming 650091, China
Abstract
A spatial co-location pattern is a group of spatial objects whose instances are frequently located in the same region. The spatial co-location pattern mining problem has been investigated extensively in the past due to its broad range of applications. In this paper we study this problem for fuzzy objects. Fuzzy objects play an important role in many areas, such as the geographical information system and the biomedical image database. In this paper, we propose two new kinds of co-location pattern mining for fuzzy objects, single co-location pattern mining (SCP) and range co-location pattern mining (RCP), to mining co-location patterns at a membership threshold or within a membership range. For efficient SCP mining, we optimize the basic mining algorithm to accelerate the co-location pattern generation. To improve the performance of RCP mining, effective pruning strategies are developed to significantly reduce the search space. The efficiency of our proposed algorithms as well as the optimization techniques are verified with an extensive set of experiments.
Funder
the National Natural Science Foundation of China
the Science Foundation of Yunnan Province
Publisher
World Scientific Pub Co Pte Lt
Subject
Artificial Intelligence,Artificial Intelligence
Cited by
39 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献