ANALYZING INFANT CRIES USING A COMMITTEE OF NEURAL NETWORKS IN ORDER TO DETECT HYPOXIA RELATED DISORDER

Author:

POEL MANNES1,EKKEL TACO2

Affiliation:

1. Department of Computer Science, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands

2. Research & Development Department, Medialab Solutions BV, Modemstraat 2b, 1033 RW Amsterdam, The Netherlands

Abstract

Based on the hypothesis that the sound of the infant cry contains information on the infant's health status, research has been done on how to improve classification of neonate crying sounds into categories called 'normal' and 'abnormal' - the latter referring to some hypoxia-related disorder. Research in this field is hindered by lack of test cases and limited understanding of feature relevance. The research described here combines various ways of dealing with the small data set problem. First, feature pre-selection is done using sequential backwards elimination of possible combinations where the performance of the set of features is tested by a Probabilistic Neural Network which has the advantage of fast learning. Using these features a neural network committee, consisting of Radial Basis Function Neural Networks, was trained on the data, using bootstrapping. This construction yields a multi-classifier system with an overall classification performance of 85% on the so-called "All Cry Units" (ACU) data set, an increase of 34% with respect to the a priori probability of 51%. Several leave-1-out experiments for Linear Discriminant Analysis (LDA), Support Vector Machines (SVM) and Neural Networks (NN) have been conducted in order to compare the performance of the multi-classifier system.

Publisher

World Scientific Pub Co Pte Lt

Subject

Artificial Intelligence,Artificial Intelligence

Reference15 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3