SALIENCE-ADAPTIVE PAINTERLY RENDERING USING GENETIC SEARCH

Author:

COLLOMOSSE J. P.1,HALL P. M.1

Affiliation:

1. Department of Computer Science, University of Bath, Bath, BA2 7AY, England

Abstract

We present a new non-photorealistic rendering (NPR) algorithm for rendering photographs in an impasto painterly style. We observe that most existing image-based NPR algorithms operate in a spatially local manner, typically as non-linear image filters seeking to preserve edges and other high-frequency content. By contrast, we argue that figurative artworks are salience maps, and develop a novel painting algorithm that uses a genetic algorithm (GA) to search the space of possible paintings for a given image, so approaching an "optimal" artwork in which salient detail is conserved and non-salient detail is attenuated. Differential rendering styles are also possible by varying stroke style according to the classification of salient artifacts encountered, for example edges or ridges. We demonstrate the results of our technique on a wide range of images, illustrating both the improved control over level of detail due to our salience adaptive painting approach, and the benefits gained by subsequent relaxation of the painting using the GA.

Publisher

World Scientific Pub Co Pte Lt

Subject

Artificial Intelligence,Artificial Intelligence

Reference8 articles.

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Painterly Style Transfer With Learned Brush Strokes;IEEE Transactions on Visualization and Computer Graphics;2024

2. A Simple, Stroke-Based Method for Gesture Drawing;Virtual Reality & Intelligent Hardware;2022-10

3. Intelli-Paint: Towards Developing More Human-Intelligible Painting Agents;Lecture Notes in Computer Science;2022

4. Self-Organised Saliency Detection and Representation in Robot Swarms;IEEE Robotics and Automation Letters;2021-04

5. Advanced tone rendition technique for a painting robot;Robotics and Autonomous Systems;2019-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3