PREDICTING INHABITANT ACTION USING ACTION AND TASK MODELS WITH APPLICATION TO SMART HOMES

Author:

RAO SIRA PANDURANGA1,COOK DIANE J.1

Affiliation:

1. Department of Computer Science and Engineering, University of Texas at Arlington, Arlington, TX 76019, USA

Abstract

An intelligent home is likely in the near future. An important ingredient in an intelligent environment such as a home is prediction – of the next low-level action, the next location, and the next high-level task that an inhabitant is likely to perform. In this paper we model inhabitant actions as states in a simple Markov model. We introduce an enhancement to this basic approach, the Task-based Markov model (TMM) method. TMM discovers high-level inhabitant tasks using the supplied unlabeled data. We investigate clustering of actions to identify tasks, and integrate clusters into a hidden Markov model that predicts the next inhabitant action. We validate our approach and observe that for simulated data we achieve good accuracy using both the simple Markov model and the TMM, whereas on real data we see that simple Markov models outperform the TMM. We also perform an analysis of the performance of the HMM in the framework of the TMM when diverse patterns are introduced into the data.

Publisher

World Scientific Pub Co Pte Lt

Subject

Artificial Intelligence,Artificial Intelligence

Cited by 51 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3