Quantum-Inspired Recommendation System with Threshold Proportion Interception

Author:

Qiao Meng1,Shan Zheng1,Wang Junchao12,Sun Huihui1,Liu Fudong1

Affiliation:

1. State Key Laboratory of Mathematical Engineering and Advanced Computing, Zheng Zhou, Henan, P. R. China

2. University of Science and Technology of China, Hefei, Henan, P. R. China

Abstract

Modern recommendation systems leverage historical behavior information to generate precise recommendation results for users. However, when the data scale of users and items is large, it is difficult to generate recommendation results in time. Tang proposed a quantum-inspired recommendation algorithm, which could solve the recommendation problem in constant time complexity. However, Tang’s approach is based on a set of assumptions which rely heavily on some empirical parameters. The time complexity for calculating parameters is high. Thus, this approach cannot be directly applied in industrial applications. In this paper, we propose a method, namely, Quantum-inspired Recommendation system with threshold Proportion Interception (QRPI), which is based on the quantum-inspired recommendation system and more suitable for industrial environments. Compared with the existing widely used recommendation algorithms, we show through numerical experiments that our solution can achieve almost the same performance with better efficiency.

Publisher

World Scientific Pub Co Pte Ltd

Subject

Electrical and Electronic Engineering,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3