Affiliation:
1. Seagate Technology, 7801 Computer Avenue, South Bloomington, MN 55435, USA
Abstract
Long time magnetization thermal switching under small amplitude high frequency excitation is analyzed. Approaches based upon conventional time-dependent energy barrier are not sufficient to describe magnetization nonvolatility under GHz excitations. Methods based upon large angle nonlinear magnetization dynamics are developed for both coherent and noncoherent magnetization switching. This dynamic approach is not only important for fundamental understanding of magnetization dynamics under combined radio frequency excitations and thermal fluctuations, but also critical for practical design of emerging spintronic devices. When applied to spin torque random access memory read operations, as sensing current duration reaches nanosecond, dynamic approach gives a switching probability estimation orders of magnitude different from that obtained from conventional time-dependent energy barrier approach.
Publisher
World Scientific Pub Co Pte Lt
Subject
Electrical and Electronic Engineering,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献