Superconductivity in Two-Orbital Model for s±-Wave Iron-Based Superconductors

Author:

Parida P. K.12,Pradhan B.3ORCID

Affiliation:

1. Department of Physics, Dhenkanal (A) College, Dhenkanal 759001, Odisha, India

2. Department of Physics, NIT, Durgapur 713209, West Bengal, India

3. Department of Physics, B.J.B. College, Bhubaneswar, Odisha 751014, India

Abstract

In high-[Formula: see text] superconductors, electrons form pairs and electric transport becomes dissipation-less at low temperatures. The iron-based superconductors (FeSCs) have the highest superconducting (SC) transition temperature next to copper oxides. The gap structure and pairing mechanism for FeSCs are hotly discussed as a central issue since their discovery. A model Hamiltonian for the superconductivity in FeSCs is proposed by a tight-binding two-orbital model. The SC gap, conduction electron density of states, specific heat and energy band structure for the system are calculated. We have proposed here a [Formula: see text]-wave pairing symmetry of the form [Formula: see text] in the model in the mean-field approximation. The model is solved by Zubarev’s double-time Green’s function technique to find the self-consistent gap equation and is solved self-consistently.

Publisher

World Scientific Pub Co Pte Lt

Subject

Electrical and Electronic Engineering,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3