Tailoring Spin-to-Charge Conversion Efficiency via Microwave Frequency in La0.67Sr0.33MnO3/Pt Bilayer System

Author:

Gupta Pushpendra1,Singh Braj Bhusan2,Mishra Abhisek1,Kumar Aditya1,Sarkar Anirban3,Waschk Markus3,Bedanta Subhankar14

Affiliation:

1. Laboratory for Nanomagnetism and Magnetic Materials, School of Physical Sciences, National Institute of Science Education and Research, An OCC of Homi Bhabha National Institute, Jatni 752050, India

2. Department of Physics, Harcourt Butler Technical University, Nawabganj, Kanpur, Uttar Pradesh 208002, India

3. Forschungszentrum Jülich GmbH, Jülich Centre for Neutron Science, (JCNS-2) and Peter Grünberg Institut (PGI-4), JARA-FIT 52425 Jülich, Germany

4. Center for Interdisciplinary Sciences (CIS), National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute (HBNI), Jatni 752050, India

Abstract

The generation of spin current in materials with high spin–orbit coupling is one of the primary topics for future spintronic applications. In this context, the high conversion efficiency of spin current to charge current is desired. Ferromagnetic resonance (FMR)-based inverse spin Hall effect (ISHE) is a quite popular method to study such spin-to-charge conversion. Here microwave frequency plays a crucial role in generating spin current which further gets converted to charge current due to spin–orbit interaction of the given material. In this work, we show the effect of microwave frequency on spin-to-charge current conversion efficiency in La[Formula: see text]Sr[Formula: see text]MnO3/Pt heterostructure prepared by oxygen-assisted molecular beam epitaxy (OMBE). From the ISHE analysis the maximum spin pumping voltage of ∼98 μV has been observed. Further spin Hall angle has been calculated for different frequencies and the maximum calculated value (∼0.06) for this system has been obtained at 14[Formula: see text]GHz.

Funder

Homi Bhabha National Institute

University Grants Commission

Department of Atomic Energy

German Academic Exchange Service New Delhi

Publisher

World Scientific Pub Co Pte Ltd

Subject

Electrical and Electronic Engineering,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3