Affiliation:
1. Department of Electrical Engineering, IIT Kanpur, Kanpur 208016, India
Abstract
In this paper, we employ semiclassical Monte Carlo approach to study spin polarized transport in InP and strained InP nanowires on GaAs substrate. Due to higher spin relaxation lengths, InP is being researched as suitable III–V material for spintronics related applications. Spin relaxation in InP channel is as a result of D'yakonov–Perel (DP) relaxation and Elliott–Yafet (EY) relaxation. We have considered injection polarization along z-direction and the magnitude of ensemble averaged spin variation is studied along the x-direction i.e., along transport direction. The effect of strain on various scattering rates and spin relaxation length is studied. We then present the effect of variation of nanowire width on spin relaxation length for the case of both strained and unstrained InP nanowire. The wire cross-section is varied between 4 × 4 nm2 and 10 × 10 nm2.
Publisher
World Scientific Pub Co Pte Lt
Subject
Electrical and Electronic Engineering,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials