Modeling and Simulation of Magnons Scattering Across Shear Spins in Multilayered Ferromagnetic Slabs

Author:

Ferrah Leila1,Bourahla Boualem2ORCID,Blizak Salah1

Affiliation:

1. Research Unit: Materials, Processes and Environment, M’hamed Bougara University, Boumerdes, Algeria

2. Laboratory of Physics and Quantum Chemistry, M. Mammeri University, BP 17 RP, Tizi-Ouzou, Algeria

Abstract

In this work, we introduce a computer model and theoretical approach based on the matching technique to investigate the spin precession and the magnetic properties of an ordered magnetic interface joining two ferromagnetic multilayers of type AB, made of 10 spin slabs, obtained by alternative two spin layers A and B. We simulate, particularly, the coherent magnon transmission through spins’ interface, in multilayered thin films, obtained by shearing a part of the film from the other at an angle of 30. The individual and total transmittance of bulk magnons of the thin film, scattering coherently at the shearing interface zone and the localized magnonic spin states, are calculated and analyzed. The transmission and reflection spin modes are derived as elements of a Landauer–Büttiker type scattering matrix. The results highlight the localized spin states on the interface shear domain and their interactions with incident magnons. The evolutions of the magnonic spectra can be presented for arbitrary directions of the incident magnons on the boundary zone, for all accessible frequencies in the propagating bands as well as for the magnetic exchange coupling between each spin A(B) and its adjacent sites and their spin intensity. The results demonstrate the dependence of the magnonic spectra for the perfect multilayered films and at the inhomogeneous domain of the interface shear. The analysis of the spectra illustrates the fluctuations, related to Fano resonances, due to the coupling between travelling magnons and the localized modes in the shear interface domain. The calculated spectra could yield useful information concerning the magnetic parameters of such interface slabs in multilayered films.

Publisher

World Scientific Pub Co Pte Ltd

Subject

Electrical and Electronic Engineering,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3