Magnetic Spin Susceptibility of Graphene in Ferromagnetic State: A Tight-Binding Model Study

Author:

Sahu Sivabrata1,Rout G. C.2ORCID

Affiliation:

1. Department of Physics, NIIS Institute of Information Science and Management, Bhubaneswar, Odisha India

2. P.G. Department of Applied Physics and Ballistics, Fakir Mohan University, Balasore, Odisha, India

Abstract

We report here a tight-binding model study of frequency-dependent ferromagnetic spin susceptibility of the graphene system. The tight-binding Hamiltonian consists of electron hoppings up to third-nearest-neighbors, substrate and impurity effects in the presence of Coulomb interaction of electrons separately at two in-equivalent A and B sub-lattices of graphene. To calculate magnetic susceptibility, we calculate the two-particle electron Green’s functions by using Zubarev’s double time Green’s function technique. The electron occupations at A and B sub-lattices for both up and down spins are computed numerically and self-consistently. The frequency-dependent real part of ferromagnetic susceptibility of the system is computed numerically by taking [Formula: see text] grid points of the electron momentum. The susceptibility displays a sharp peak at the neutron momentum transfer energy at low energies and another higher energy resonance peak appearing at substrate-induced gap. The [Formula: see text]-peak shifts to a higher energy with the increase of momentum [Formula: see text]. The susceptibility shows that the high energy peak shifts to higher energies due to the corresponding increase of substrate-induced gap observed experimentally. It is observed that the Coulomb interaction suppresses the substrate-induced gap, but the impurity doping at A site enhances the substrate-induced gap, while doping at B site suppresses it.

Publisher

World Scientific Pub Co Pte Lt

Subject

Electrical and Electronic Engineering,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3