Recurrent solutions of the Lorenz system of differential equations

Author:

Zlatanovska Biljana1,Dimovski Donc̆o2

Affiliation:

1. Faculty of Computer Science, Goce Delc̆ev, University, Krste Misirkov No. 10-A, Stip, Republic of North Macedonia

2. Macedonian Academy of Sciences and Arts, Bul. Krste Misirkov, 2, P.O. Box 428, 1000 Skopje, Republic of North Macedonia

Abstract

By introducing new variables in the systems of difference equations from the paper [B. Zlatanovska and D. Dimovski, Systems of difference equations approximating the Lorentz system of differential equations, Contrib. Sec. Math. Tech. Sci. 33 (2012) 75–96], new systems of difference equations are obtained. The solutions of these new systems of difference equations depend only on the initial values [Formula: see text] and the coefficients [Formula: see text] . The power series whose coefficients are these solutions present the recurrent solutions for the Lorenz system of differential equations. A comparison between the behavior of the Lorenz system of differential equations and the local behavior of its recurrent solutions for small time steps is examined in examples by computer simulations, as in the papers [B. Zlatanovska and D. Dimovski, Systems of difference equations approximating the Lorentz system of differential equations, Contrib. Sec. Math. Tech. Sci. 33 (2012) 75–96; B. Zlatanovska and D. Dimovski, Systems of difference equations as a model for the Lorentz system, in Proc. Fifth Int. Scientific Conf. FMNS - 2013, Vol. I (Blagoevgrad, Bulgaria, 2013), pp. 102–107 and B. Zlatanovska, Approximation for the solutions of Lorenz system with systems of differential equations, Bull. Math. 41(1) (2017) 51–61].

Publisher

World Scientific Pub Co Pte Ltd

Subject

General Mathematics

Reference18 articles.

1. K. T. Alligood, T. D. Sauer and J. A. Yorke, Chaos: An Introduction to Dynamical Systems (Springer-Verlag, New York, USA, 2000), pp. 359–370.

2. VSVO formulation of the taylor method for the numerical solution of ODEs

3. M. W. Hirsch, S. Smale and R. L. Devaney, An Differential Equations, Dynamical Systems and An Introduction to Chaos (Elsevier, USA, 2004), pp. 303–324.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. About the solutions of Modified Lorenz system;Asian-European Journal of Mathematics;2024-06-11

2. CMOS Design of Chaotic Systems Using Biquadratic OTA-C Filters;Journal of Low Power Electronics and Applications;2024-03-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3