Affiliation:
1. Institute of Modern Physics, Fudan University, Shanghai 200433, China
Abstract
Dynamic trajectories of relativistic electrons injected into tightly focused ultra-intense laser field have been investigated. In addition to the previously-reported CAS (Capture and Acceleration Scenario) and IS (Inelastic Scattering) trajectories, a new kind of nonlinear electron trajectory is found when the beam waist radius w0 is small enough (kw0≤30, k is the wave number) and incident angle is small. We shall call it PARM (Penetrate into Axial Region and Move). The basic feature of PARM trajectory shows the strong diffraction effect of a tightly-focused laser field. Part of the incident electrons that experience the strong transversal force from the diffraction edge field as they travel toward the beam waist will follow the PARM trajectory. This force can push the electrons toward the beam center. Thus unlike the CAS and IS electrons, the PARM electrons will move along the region near the beam axis. We also found some of the PARM electrons can gain energy from the field. The conditions for PARM electrons to appear were examined and are presented here. The implication of the presence of PARM to the planned experimental test of the CAS scheme is addressed.
Publisher
World Scientific Pub Co Pte Lt
Subject
Physics and Astronomy (miscellaneous),Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献