Bonding state energy of metal nanoparticle dimer and its dependence on nanosphere size and interparticle separation

Author:

Stephanie Margareta Vania1,Iskandar Alexander A.1,Tjia May-On1

Affiliation:

1. Physics of Magnetism and Photonic Research Division, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Indonesia

Abstract

A study is conducted regarding the effects of particle size [Formula: see text] and interparticle separation [Formula: see text] on the electromagnetic (plasmon) coupling in a dimer of two identical metal nanospheres. The dimer states are modeled as the hybridized bonding and antibonding states of two isolated plasmon states, with the associated energies given in terms of the isolated plasmon energy ([Formula: see text], the coupling energy ([Formula: see text] and the overlap integral ([Formula: see text] of the constituent plasmonic fields. The resonance absorption energies of the isolated plasmon and the dimer in certain dielectric medium are calculated according to the Mie theory for incident light of parallel polarization along the dimer axis. The results are fitted with the bonding state energies of both Au and Ag nanosphere dimers for [Formula: see text] ranging within 10–20[Formula: see text]nm and x varied within [Formula: see text]–200[Formula: see text]nm in compliance with the restricted consideration of dipole absorption spectra. The excellent fits of the bonding state energies [Formula: see text] for the ranges of [Formula: see text] and [Formula: see text] variations are consistently achieved with [Formula: see text] around 0.99 by a single function of the form [Formula: see text] where [Formula: see text] and [Formula: see text] vary with the nanosphere materials and the surrounding media considered. This result suggests the possible relation of the best fitted functional form [Formula: see text] with the underlying physical mechanism.

Publisher

World Scientific Pub Co Pte Lt

Subject

Physics and Astronomy (miscellaneous),Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Nonlinear Optical Properties of Low Dimensional Quantum Systems;Topics in Applied Physics;2022

2. Induced higher order multipolar resonances from interacting scatterers;Journal of the Optical Society of America B;2020-12-18

3. Polarization property of light scattered on dielectric nanorods at oblique incident angle;Journal of Nonlinear Optical Physics & Materials;2019-12

4. A comparison of optical properties of disc-like and spherical quantum dots;Journal of Nonlinear Optical Physics & Materials;2018-09

5. The influence of illumination on two-photon absorption of quantum dots;Journal of Nonlinear Optical Physics & Materials;2018-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3