Optical brake induced by laser shock waves

Author:

Kang Qiao1,Shen Dongyi1,Sun Jie1,Luo Xin2,Liu Wei1,Zhou Zhihao2,Zhang Yong3,Wan Wenjie12

Affiliation:

1. The State Key Laboratory of Advanced Optical Communication Systems and Networks, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, P. R. China

2. MOE Key Laboratory for Laser Plasmas and Collaborative Innovation Center of IFSA, University of Michigan-Shanghai Jiao Tong University Joint Institute, Shanghai Jiao Tong University, Shanghai 200240, P. R. China

3. National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, P. R. China

Abstract

We demonstrate an optical method to modify friction forces between two close-contact surfaces through laser-induced shock waves, which can strongly enhance surface friction forces in a sandwiched confinement with/without lubricant, due to the increase of pressure arising from excited shock waves. Such enhanced friction can even lead to a rotating rotor’s braking effect. Meanwhile, this shock wave-modified friction force is found to decrease under a free-standing configuration. This technique of optically controllable friction may pave the way for applications in optical levitation, transportation, and microfluidics.

Funder

National key research and development program

the National key research and development program

National Science Foundation of China

Shanghai MEC Scientific Innovation Progra

Publisher

World Scientific Pub Co Pte Lt

Subject

Physics and Astronomy (miscellaneous),Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Ultra-narrowband filter based on the metal-cladding resonant waveguide;Optics Express;2022-12-08

2. Surface birefringence in FTO thin film fabricated by ultrafast laser;Journal of Nonlinear Optical Physics & Materials;2022-09-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3